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Abstract

Damping in air gaps of micromechanical devices that vibrate out-of-plane is studied at frequencies where the acoustic

wavelength is comparable with the air gap dimensions. A FEM study with a viscoacoustic solver shows that above a

certain frequency, closed damper borders can be assumed in the approximate analysis of the squeeze-film damper,

regardless of the practical border conditions. Here, this closed-border (trapped gas) problem is solved analytically from the

linearized Navier–Stokes equations in 1D. This results in a compact model for the mechanical impedance that accounts for

damping, inertial and spring forces as well as thermal behaviour and slip border conditions. The model produces the gas

resonances in the air gap when the wavelength of the acoustic wave is smaller than the gap dimensions. Due to the slip

conditions, the model is valid in modeling micromechanical oscillating structures with small air gaps.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Damping in air gaps of out-of-plane oscillating structures has been traditionally modelled with the
Reynolds equation [1,2]. It has been derived by simplifying the Navier–Stokes equations assuming a small air
gap compared with the length or width of the damper surface, negligible inertial forces (Reynolds number51)
and isothermal conditions. The Reynolds equation considers the viscous gas flow and compressibility in a thin
air gap assuming constant pressure across the small gap and is usable only up to a certain frequency. The
applicable frequency range can be extended considering also the inertia in the gap flow [3–6], together with the
non-isothermal behaviour [7–9]. These models work in the region where the acoustic wavelength is
comparable with the dimensions of the damper surface, but they still assume constant pressure across the air
gap and an acoustic wavelength much larger than the air gap height.

At higher frequencies where the length of the acoustic wave is comparable to the height of the air gap, the
pressure is no more constant across the air gap. Moreover, neither isothermal nor adiabatic assumptions can
be made, and temperature variation and thermal conductivity must be accounted for in the model. This leads
to another damping mechanism in addition to viscous damping.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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When the small air gap separations of micromechanical devices are considered, the continuum boundary
conditions no more apply. Several papers discuss the modified Reynolds equation that considers the change in
the flow rate vs. the Knudsen number [10–13]. These models are valid at a large range of Knudsen numbers,
but they assume a low Reynolds number. The model in Ref. [6] considers the gas inertia and the gas
rarefaction in the slip flow regime (Knudsen number Kno0:1).

A FEM study with a viscoacoustic solver in this paper shows that above a certain frequency the wave
propagation in the air gap takes place only in the out-of-plane direction (except for the region close to the
borders), indicating a fully trapped gas situation. That is, in the analysis above a certain frequency, closed
damper borders can be assumed regardless of any border conditions. This assumption simplifies the analysis
considerable, since the topology of the damper becomes insignificant, and only the surface area needs to be
considered.

Several papers study the behaviour of oscillating visco-thermal fluid in small air gaps with a varying
pressure distribution across the gap [14–18]. These studies concentrate on the viscoacoustic problem of gas
between a vibrating membrane and a backing wall, and wave propagation in two directions has been included
in these models. Generally, open border conditions are assumed, but Bruneau et al. [15] have given a solution
for finite specific impedance at the periphery. These studies concentrate on frequencies below the air gap
resonances; they do not consider slip boundary conditions nor the viscous stress term in the force acting on the
surface.

In this paper, the emphasis is on operation at frequencies above the classical acoustic frequencies where the
gas can be assumed to be fully trapped in the gap. The linearized Navier–Stokes (N–S) equations are presented
and reduced to a 1D model for the closed border (fully trapped gas) situation. The variables are the pressure,
density, velocity and temperature that all vary across the gap. The equations are solved analytically taking into
account the boundary conditions. Due to the small dimensions in micromechanical devices, slip conditions are
used for temperature [19]. Velocity slip conditions are not needed here due to the trapped gas. In this paper,
two different solutions are presented: a simple model that assumes adiabatic conditions, and an exact model
that considers varying thermal conditions between isothermal and adiabatic.

2D FEM simulations with a viscoacoustic solver (linearized N–S equations) were used to verify the derived
models. The behaviour of the damping and spring forces are demonstrated, and the responses of the exact and
the simple models are compared.
2. Viscoelastic wave propagation model

In this chapter, a wave propagation model for a trapped gas situation is derived for the structure shown in Fig. 1.
In practice, the upper plane represents a surface of a vibrating body, and there is no gas flow above this plane. The
figure shows the dimensions of the damper surface (lx; ly) and the air gap h0. Normalized coordinates (x, y and z)
are used below instead of the absolute coordinates (x, y and x) shown in the figure. The same notation applies to the
variables used. The upper surface moves and acts on the gas in the air gap between the surfaces.
lx
ly

h0

x

z

y

Fig. 1. A squeeze-film damper consisting of parallel surfaces moving perpendicularly.
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2.1. Variables

A frequency-domain analysis with small perturbation amplitudes at the angular frequency o is assumed. p,
r and T represent small relative variations around static pressure p0, density r0 and temperature T0,
respectively. Equations are presented in normalized form. The small-amplitude perturbation variables are
specified with

p ¼ p0ð1þ peiotÞ; T ¼ T0ð1þ TeiotÞ; r ¼ r0ð1þ reiotÞ. (1)

u, v and w are velocity components in the x-, y- and z-directions, respectively. The equations will be presented
in normalized form such that velocities u, v and w are normalized to the adiabatic speed of sound c0, while the
dimensions x, y and z are normalized with the characteristic dimensions lx, ly and h0, respectively.
2.2. Damping and spring forces

The damper is characterized here with a mechanical impedance Zm, that is calculated from the force F

acting on the moving upper surface having a velocity of w0 in the z direction:

Zm ¼ �
F

w0
¼ �

lxlyp0F

c0w0
. (2)

The damping coefficient c ¼ ReðZmÞ (real part of Zm), and the spring constant is b ¼ �o ImðZmÞ, where
ImðZmÞ is the imaginary part of Zm.
2.3. Characteristic numbers

The behaviour of the flow in a narrow air gap is described in the frequency domain by a few characteristic
numbers. The Reynolds number Re (the square of the shear wave number s) is the ratio between inertial and
viscous forces:

s2 ¼ Re ¼
oh2

0r0
m

, (3)

where m is the viscosity coefficient and h0 is the characteristic height of the air gap.
The reduced frequency k ¼ oh0=c0 is scaled with the nominal gap displacement h0 and the adiabatic speed

of sound c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gp0=r0

p
, where g is the specific heat ratio.

The Knudsen number Kn ¼ l=h0 is a measure of gas rarefaction and l is the mean free path. The Prandtl
number Pr characterizes the thermal properties. Here, the square root of Pr is used,

f ¼
ffiffiffiffiffiffi
Pr
p
¼

ffiffiffiffiffiffiffiffiffi
mCp

k

r
, (4)

where Cp is the specific heat at constant pressure and k is the thermal conductivity.
KT is the ‘‘thermal Knudsen number’’ [19] that characterizes the temperature jump at the surfaces due to

rarefied gas

KT ¼
2� aT

aT

2g
gþ 1

� �
Kn

f2
, (5)

where aT is the energy accommodation coefficient.
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2.4. Linearized Navier– Stokes equations

The dimensionless notation by Beltman [8] is used here for the linearized time-harmonic Navier–Stokes
equations:

iu ¼ �
g

kg
qp

qx
þ

1

s2
g2 q

2u

qx2
þ

g

a

� �2 q2u
qy2
þ

q2u
qz2

� �
þ

1

3

g

s2
q
qx

g
qu

qx
þ

g

a

� � qv

qy
þ

qw

qz

� �
, (6)

iv ¼ �
g

akg
qp

qy
þ

1

s2
g2 q

2v

qx2
þ

g

a

� �2 q2v
qy2
þ

q2v
qz2

� �
þ

1

3

g

as2
q
qy

g
qu

qx
þ

g

a

� � qv

qy
þ

qw

qz

� �
, (7)

iw ¼ �
1

kg
qp

qz
þ

1

s2
g2 q

2w

qx2
þ

g

a

� �2 q2w

qy2
þ

q2w
qz2

� �
þ

1

3

1

s2
q
qz

g
qu

qx
þ

g

a

� � qv

qy
þ

qw

qz

� �
, (8)

g
qu

qx
þ

g

a

qv

qy
þ

qw

qz
¼ �ikr, (9)

p ¼ rþ T , (10)

iT ¼
1

s2f2
g2 q

2T

qx2
þ

g

a

� �2 q2T
qy2
þ

q2T
qz2

� �
þ i

g� 1

g
p. (11)

The height of the gap g ¼ h0=lx and ratio of the plate a ¼ ly=lx are as shown in Fig. 1. The equations above
assume zero bulk viscosity b ¼ 2

3
mþ Z, where the second viscosity coefficient, Z, is determined by the

Stokes condition b ¼ 0 [20,21].

3. 1D wave propagation model

In his ‘‘narrow gap’’ solution (Appendix B in Ref. [8]), Beltman simplifies Eqs. (6)–(11) assuming g=s51
and a negligible z-directional velocity w compared with the velocities u and v. Here the situation is different: a
small gap is not assumed, but velocities u and v are assumed to be negligible due to the closed borders. This
reflects the trapped gas situation. Now, the basic equations (6)–(11) degenerate to the following set of wave
equations as an asymptote for increasing frequency:

iw ¼ �
1

kg
qp

qz
þ

4

3s2
q2w
qz2

, (12)

qw

qz
¼ �ikr, (13)

p ¼ rþ T , (14)

iT ¼
1

s2f2

q2T
qz2
þ i

g� 1

g
p. (15)

Instead of zero boundary conditions, slip boundary conditions for temperature T [19] are applied:

T jz¼1 ¼ �KT
qT

qz

����
z¼1

; T jz¼0 ¼ KT
qT

qz

����
z¼0

. (16)

The force F acting on the surface is due to the pressure and the viscous stress according to the Navier–Poisson
law with zero bulk viscosity [21]

F ¼ �pð1Þ þ
4gk

3s2
qw

qz

����
z¼1

. (17)



ARTICLE IN PRESS
T. Veijola, A. Lehtovuori / Journal of Sound and Vibration 319 (2009) 606–621610
Since u and v were assumed to be negligible compared to w, only the spatial derivate in the z direction is
needed in Eq. (17). Because of the relation Eq. (17), the force term for high frequencies depends on the
viscosity m.

3.1. Simple solution

First, a simplified case is studied to solve Eqs. (12)–(15). Since the model is derived here for relatively high
frequencies, adiabatic thermal conditions are assumed. This simplifies Eq. (15) to

T ¼
g� 1

g
p (18)

and the density from Eq. (14) results in r ¼ p=g: The isothermal assumption that is valid at low frequencies
only would result in r ¼ p. The pressure is solved from Eq. (13) resulting in

p ¼ �
g
ik

qw

qz
. (19)

Eq. (12) describes the relation between pressure and velocity in the z-direction, and after inserting Eq. (19) into
it, results in

iw ¼
1

ik2
þ

4

3s2

� 	
q2w

qz2
. (20)

The velocity function

wðzÞ ¼
w0 sinhðqzÞ

sinhðqÞ
, (21)

where

q ¼ �i
1

k2
þ i

4

3s2

� 	�1=2
(22)

is a solution of Eq. (20) and satisfies the boundary conditions wð1Þ ¼ w0 and wð0Þ ¼ 0. At low frequencies,
q! 0 and wðzÞ approaches a linear velocity profile w0z corresponding to the approximation by Beltman.

Using Eq. (19) for pressure and Eq. (21) for velocity, the force acting on the moving surface Eq. (17)
becomes

F ¼
1

ik
þ

4k

3s2

� 	
gqw0

tanhðqÞ
¼

ikgw0

q tanhðqÞ
(23)

and Eq. (2) gives the unnormalized mechanical impedance.
The pressure term dominates the force at low frequencies when k2=s251, and the viscous stress dominates

at high frequencies when k2=s2b1. According to Eq. (17), the derivative qw=qz determines alone the frequency
dependency at high frequencies, since k=s2 is a constant. The asymptotic force at high frequencies can be
derived from Eq. (23) assuming tanhðqÞ ¼ 1. This asymptotic force is

F1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4igmo
3p0

s
. (24)

In Ref. [22], the viscous stress term in Eq. (17) was not considered in the model, resulting in an incorrect force
at very high frequencies. Also, the model in Ref. [22] showed a good agreement with FEM simulations, but the
reason was that only the simulated pressure term was considered in the comparison.

3.2. Resonant frequencies

The expression for resonant frequencies can be approximated from Eq. (23) assuming a large s compared to k

(small viscosity). This simplifies q to �ik. Resonances occur when the denominator in Eq. (23) is zero or
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infinity. This happens when iq ¼ Np=2, where N ¼ 1; 2; 3; . . . . Odd values of N give antiresonances, while even
values of N give resonances. Assuming adiabatic conditions, the approximate Nth resonant frequency is

f N ¼
N

4h0

ffiffiffiffiffiffiffi
gp0

r0

r
¼

Nc0

4h0
. (25)

The first antiresonance f 1 is especially interesting, since if the device is operated close to this frequency, a very
small damping due to gas can be achieved. For air at atmospheric pressure, f 1 ¼ 87:7MHz for an air gap of
1mm.
3.3. Exact solution

The exact solution for Eqs. (12)–(15) is presented in the appendix. The boundary conditions for velocity are
wð0Þ ¼ 0 and wð1Þ ¼ w0, and the temperature has slip conditions at the surfaces. The solution gives velocity w,
pressure p, temperature T and density r of the gas as function of z. The calculation of these variables requires
the evaluation of numerous complex auxiliary variables. The force on the upper surface is calculated with
Eq. (A.37) in the appendix, and Eq. (2) gives the unnormalized mechanical impedance.

The appendix of Ref. [22] reports the exact solution with zero temperature boundary conditions only.
The asymptotic behaviour of the exact model at high frequencies is the same as the behaviour of the simple

model in Eq. (24) since at high frequencies adiabatic thermal conditions can be assumed.
4. Model verification

4.1. 2D FEM simulations

FEM simulations were performed with a solver for dissipative acoustic flow [23] included in Elmer [24]
multiphysics FEM software. It solves the linearized N–S equations (6)–(11), with, velocity and temperature
slip conditions.

Fig. 2 shows the topology of the simulated 1D squeeze-film damper. It is assumed that the third dimension
ly is much larger than lx, which justifies the study of the 2D gas flow in the cross-section. The gas is bounded
by two rigid parallel surfaces, and the upper surface is oscillating with a small amplitude of w0 in the z

direction.
In this study, parameters for air at standard atmosphere conditions are used, see Table 1. The air gap height

is h0 ¼ 1mm and the length is lx ¼ 10 mm (ly ¼ 1m). The upper surface oscillates in the z-direction with a
constant velocity amplitude of 1m/s (w0 ¼ 1).

At the damper borders boundary conditions pð�1=2Þ ¼ 0 and uð�1=2Þ ¼ 0 were used for open and closed
borders, respectively. Slip boundary conditions for temperature were used and ideally thermal conducting
surfaces were assumed. A mesh of 8000 rectangular elements was used, and the simulation was performed at
81 frequencies from 10 kHz to 1GHz. The mesh was refined close to the borders. Tests with a higher number
of elements (12,000) gave the same results within a relative amplitude and phase changes of 0:4% and 0:3�,
respectively. The gas parameters are shown in Table 1.
Fig. 2. The cross-section of squeeze-film damper. The y dimension of the damper ly is assumed to be much larger than the x dimension lx.

Alternatively, closed borders (u ¼ 0) or open borders (p ¼ 0) are used.
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Table 1

Gas parameters used in the simulations

Description Value Unit

p0 Pressure 100 103 N=m2

T0 Temperature 300 K

m Viscosity coefficient 18.5 10�6 N s=m2

r0 Density of air 1.155 kg=m3

Cp Specific heat 1.01 103 J=kg=K
g Specific heat ratio 1.4

k Heat conductivity 0.025 W/m/K

l Mean free path 68.22 10�9 m

a Accommodation coefficient 1.0

aT Thermal accommodation coefficient 1.0

1

1m

3m

10m

30m

0.1

-90

-45

0

45

90
APLAC 7.92 User: TKK Circuit Theory Lab. Wed Dec 12 2007
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Z
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Fig. 3. Simulated amplitude (�) and phase (&) of Zm for open and closed borders.
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4.2. Open/closed damper boundaries

To demonstrate the trapping of the gas in the air gap at high frequencies, Fig. 3 shows forces acting on the
upper surface as a function of frequency in two cases. First, the borders are assumed to be open (zero
pressure); second, they are assumed to be closed (zero velocity). The amplitude responses are identical above a
certain frequency indicating that at high frequencies, the flow velocity in the x direction becomes insignificant.
The amplitude and phase responses are identical above 70MHz (k ¼ 1:26 and s ¼ 5:34). This is close to the
first resonant frequency at 88MHz. Hence, at high frequencies the gas is trapped in the gap corresponding the
closed border assumption, even for open border conditions.

Fig. 4 shows simulated pressure, velocity, and temperature amplitude distributions for the open border case
at certain frequencies. These frequencies represent different flow regions that will be studied more closely.
Frequency f 1 represents a small frequency, at which the pressure distribution across the gap is constant, and
the velocity u out from the damper borders is considerable. f 1 and f 2 indicate the first and the second resonant
frequencies. The maximum amplitudes for p, u, w and T in Fig. 4 are 200Pa, 6:7m=s, 1:8m=s and 0:75K,
respectively.

The amplitude profiles in Fig. 4(b) show clearly that, at high frequencies f 1 and f 2, the velocity u in the x

direction is independent of the x-coordinate, except very close to the borders. However, since the force has a
minimum at f 1, any additional force component due to u might contribute considerably to the force at that
frequency. Fig. 3 confirms this, since the relative deviation between the open border and closed border cases is
maximum at f 1 ¼ 88MHz (except for the low-frequency regime). For a small gap to length ratio g, the
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Fig. 4. Simulated relative amplitude profiles of (a) pressure jpj, (b) velocity juj in the x direction, (c) velocity jwj in the z direction and (d)

temperature jT j at different frequencies in the case of open borders. Low-frequency regime f 0 ¼ 2:6MHz (k ¼ 0:047 and s ¼ 1:0), first
resonance (force minimum) f 1 ¼ 80MHz (k ¼ 1:44 and s ¼ 5:6) and second resonance (force maximum) f 2 ¼ 180MHz (k ¼ 3:24 and

s ¼ 8:4). Here h0 ¼ 1mm and lx ¼ 10mm. (e) The colour scale used for relative amplitudes.
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contribution of the borders is negligible, but for larger ratios, say 0:2, the closed-border assumption cannot be
used in approximating the open-border situation at high frequencies.

Fig. 5 shows the pressure, velocity and temperature distributions in the air gap for the closed border case.
These FEM simulations show clearly that the velocity in the x direction is zero and the other quantities do not
depend on x.

4.3. Comparison between the simple and the exact model

Fig. 6 shows the difference between simple and exact solutions. The response of the exact model is identical
with FEM simulation results made with closed borders. The resonant frequency of the simple solution
matches well with the one calculated from Eq. (25). The difference between the amplitudes and phases are
considerable, but the simple model does produce the same resonances as the exact model. The difference of the
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Fig. 5. Simulated relative amplitude profiles of (a) pressure jpj, (b) velocity juj in the x direction, (c) velocity jwj in the z direction, and (d)

temperature jT j at different frequencies in the case of closed borders. Low-frequency regime f 0 ¼ 2:6MHz (k ¼ 0:047 and s ¼ 1:0), first
resonance (force minimum) f 1 ¼ 80MHz (k ¼ 1:44 and s ¼ 5:6), and second resonance (force maximum) f 2 ¼ 180MHz (k ¼ 3:24 and

s ¼ 8:4). Here h0 ¼ 1mm and lx ¼ 10mm. The colour scale and the maximum amplitudes are the same as in Fig. 4.

T. Veijola, A. Lehtovuori / Journal of Sound and Vibration 319 (2009) 606–621614
two models is due to thermal behaviour. The simple model represents not only the adiabatic conditions, but
also the case of a large Knudsen number Kn. This is not easy to see from the equations, but can be shown
using the exact model.

Fig. 6 shows also the high-frequency asymptotic behaviour of the impedance calculated from Eq. (24). The
contribution of the pressure term only in the force in Eq. (17) is also shown. The viscous stress term increases
the force amplitude and inverts the phase at very high frequencies.

4.4. Damping coefficient and spring constant

When characterizing the fluid–structure interaction in practice, the damping coefficient and the spring
constant are used: the damping coefficient determines the quality factor of the device and the spring coefficient
determines the change in the mechanical resonant frequency. Fig. 7 presents the damping coefficient and
the spring constant given by the model. Responses for two different air gap heights (a) h0 ¼ 1 mm and
(b) h0 ¼ 2mm are compared (lx ¼ 10 mm). The damping coefficient c ¼ ReðZmÞ has a minimum at the first
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Fig. 6. Impedance Zm (a) amplitudes and (b) phases calculated with the exact solution (——) compared with simple solution (— �— �—)

and results of FEM simulation with closed borders (amplitudes � and phases&). The asymptotic impedance from Eq. (24) (— ——) and

the exact model ignoring the viscous force term (— �� — �� —) are also shown in the figures.
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resonance. When this minimum is matched with the resonance of the mechanical structure, the quality factor
can be maximized.

The spring constant b is constant at small frequencies but goes below zero at the first resonance. A negative
spring constant indicates inertial force, not a spring force. The inertial force dominates at very high frequencies.

4.5. Profiles of variables

Profiles of pressure p, temperature T and displacement w amplitudes at different frequencies are presented in
Fig. 8. The exact model is used to compute the profiles. The pressure profile in Fig. 8(a) shows that at the first
resonance frequency f 1, the pressure is small at z ¼ 1 and at the second resonance frequency f 2 it is
considerably larger. The velocity w in Fig. 8(b) satisfies the boundary conditions (wð0Þ ¼ 0 and wð1Þ ¼ 1), and
shows an almost linear low-frequency response at f 0. At larger frequencies, the deviation from this linear
behaviour is considerable. The temperature in Fig. 8(c) is not zero at the borders (z ¼ 0 or z ¼ 1), indicating a
temperature jump due to rarefied gas.

5. Conclusions

FEM simulations show that both simple and exact models can be used in approximating the damping and
spring forces due to gas accurately at frequencies that are larger than the first gap resonant frequency.
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Fig. 7. Damping coefficient c in N s/m and the spring constant b in N/m as a function of frequency according to the exact model, and

results of FEM simulation with closed borders (damping coefficient � and spring constant &). (a) h0 ¼ 1mm and (b) h0 ¼ 2mm.
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This justified the derivation of the model for the closed border case. The accuracy of this approximation
depends on the gap height to the surface dimension ratio. The results in Fig. 3 show that a ratio of 0:1, or
smaller, is sufficient to keep the border effects small. The assumption of a 2D damper topology where ly was
much larger than lx was made in the FEM simulations. This did not limit the applicability of the model to such
structures, since the force does not depend on the shape of the surfaces in case of trapped gas.

Slip conditions were used to have an accurate model also for small air gaps in the slip flow regime Kno0:1.
Neither the model nor the slip conditions are accurate outside the slip flow regime. However, the exact model
shows that the model approaches the simple model for infinite Kn. Assuming that the same asymptotic
behaviour as for the slip flow holds for the rarefied gas flow, the exact model gives a good approximation for
any Kn.

The model shows that if the resonator can be designed such that the minimum of the damping coefficient
matches the resonance of the device, then the quality factor can be maximized.

The comparison between the simple and exact models shows that for an accurate model, it is necessary to
include the full temperature dependency in the model. However, the simple model gives a good estimate of the
behaviour of the damping and spring forces.

The bulk viscosity was not considered here. Further studies would be required to study its influence.
The model can be applied in calculating the gas damping in air gaps of RF MEMS capacitively coupled

resonators, such as a disk resonator [25–29]. Usage in modelling MEMS devices has been emphasized here,
but the model is applicable also for larger gap heights and lower resonant frequencies, cases where slip
conditions are not necessarily needed.

To have a compact model for a large frequency range from the viscous flow regime up to the frequencies
where gap resonances occur, the presented model can be used as a building block.
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Fig. 8. Profiles of (a) pressure jpj, (b) velocity jwj and (c) temperature jT j at a few frequencies. f 0 ¼ 20MHz (k ¼ 0:36 and s ¼ 2:8) (——),

f 1 ¼ 80:0MHz (k ¼ 1:44 and s ¼ 5:6) (– – –) is close to the first resonant frequency and f 2 ¼ 180MHz (k ¼ 3:24 and s ¼ 8:4) (— �— �—)

is close to the second resonant frequency. The exact model is used here.
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Appendix A. Exact solution

An exact solution for Eqs. (12)–(15) is presented considering the non-adiabatic thermal conditions and
boundary conditions for velocity and temperature. After some manipulation, the following fourth-order
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differential equation results:

1

s2f2

1

ik
þ

4kg
3s2

� 	
w0000 �

i4k

3s2
þ

ikg

s2f2
þ

1

k

� 	
w00 � kw ¼ 0 (A.1)

for velocity w and

1

s2f2

1

ik
þ

4kg
3s2

� 	
T 0000 �

i4k

3s2
þ

ikg

s2f2
þ

1

k

� 	
T 00 � kT ¼ 0 (A.2)

for temperature T as well. In this appendix, the derivatives with the respect to z are denoted with primes
(T 0000 ¼ q4T=qz4), and the dependence on z is denoted by, e.g., wðzÞ or T 000ðzÞ.

These homogenous linear equations with constant complex coefficients have a characteristic equation

a1r4 þ a2r2 � k ¼ 0, (A.3)

where

a1 ¼
1

s2f2

1

ik
þ

4kg
3s2

� 	
, (A.4)

a2 ¼ �
i4k

3s2
þ

ikg

s2f2
þ

1

k

� 	
. (A.5)

The roots of Eq. (A.3) are:

r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 4a1k

q
2a1

vuut
; r3 ¼ �r1, (A.6)

r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 4a1k

q
2a1

vuut
; r4 ¼ �r2, (A.7)

and thus the solution of Eq. (A.1) is

wðzÞ ¼ C1e
r1z þ C2e

r2z þ C3e
r3z þ C4e

r4z. (A.8)

Constants C1, C2, C3 and C4 are determined using boundary conditions:

wð0Þ ¼ 0, (A.9)

wð1Þ ¼ w0, (A.10)

Tð0Þ ¼ KT T 0ð0Þ, (A.11)

Tð1Þ ¼ �KT T 0ð1Þ. (A.12)

Therefore, the temperature is written as function of velocity w. Eqs. (12)–(15) reduce now to

T 0 ¼ A1wþ A2w00, (A.13)

w0 ¼ A3T þ A4T
00, (A.14)

where

A1 ¼ �ikg, (A.15)

A2 ¼
1

ik
þ

4kg
3s2

� 	
, (A.16)
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A3 ¼ �
ik

g� 1
, (A.17)

A4 ¼
kg

ðg� 1Þs2f2
. (A.18)

Solving T from Eqs. (A.13) and (A.14) and p from Eqs. (13), (14) and (A.19) yields

T ¼ B1w0 þ B2w000, (A.19)

p ¼ �
1

ik
w0 þ T ¼ B1 �

1

ik

� 	
w0 þ B2w

000, (A.20)

where B1 and B2 are the auxiliary variables:

B1 ¼
1� A1A4

A3
; B2 ¼ �

A2A4

A3
. (A.21)

Eq. (A.19) can be used to utilize the boundary conditions for temperature in Eqs. (A.11) and (A.12) to solve
the velocity:

B1w
0ð0Þ þ B2w

000ð0Þ ¼ KT B1w
00ð0Þ þ KT B2w

0000ð0Þ,

B1w
0ð1Þ þ B2w000ð1Þ ¼ �KT B1w

00ð1Þ � KT B2w
0000ð1Þ.

After applying boundary conditions for velocity in Eqs. (A.9) and (A.10) in addition to the conditions above,
the following system of equations results:

C1 þ C2 þ C3 þ C4 ¼ 0, (A.22)

C1e
r1 þ C2e

r2 þ C3e
r3 þ C4e

r4 ¼ w0, (A.23)

C1Q1 þ C2Q2 þ C3Q3 þ C4Q4 ¼ 0, (A.24)

C1S1e
r1 þ C2S2e

r2 þ C3S3e
r3 þ C4S4e

r4 ¼ 0, (A.25)

where Qi ¼ ðB1ri þ B2r3i Þð1� KT riÞ and Si ¼ ðB1ri þ B2r
3
i Þð1þ KT riÞ. Solving the system of equations

(A.22)–(A.25) gives the coefficients Ci in Eq. (A.8) which are:

C1 ¼
H2P3M � GP3 �MP2

P1 þ P2L�H1P3 �H2P3L
, (A.26)

C2 ¼ LC1 þM, (A.27)

C3 ¼ G �H1C1 �H2C2, (A.28)

C4 ¼ �C1 � C2 � C3, (A.29)

where

G ¼ w0=ðe
r3 � er4 Þ, (A.30)

H1 ¼ ðe
r1 � er4 Þ=ðer3 � er4Þ, (A.31)

H2 ¼ ðe
r2 � er4 Þ=ðer3 � er4Þ, (A.32)

L ¼
H1K3 � K1

K2 �H2K3
, (A.33)

M ¼
�GK3

K2 �H2K3
, (A.34)
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Ki ¼ B1ðri � r4Þ þ B2ðr
3
i � r34Þ � KT B1ðr

2
i � r24Þ � KT B2ðr

4
i � r44Þ, (A.35)

Pi ¼ B1ðrie
ri � r4e

r4Þ þ B2ðr
3
i e

ri � r34e
r4 Þ þ KT B1ðr

2
i e

ri � r24e
r4Þ þ KT B2ðr

4
i e

ri � r44e
r4Þ. (A.36)

Now the values for variables pðzÞ, wðzÞ, TðzÞ can be calculated from Eqs. (A.20), (A.8) and (A.19), respectively.
The density is simply rðzÞ ¼ pðzÞ � TðzÞ.

The force on the upper surface is calculated with Eq. (17), resulting in

F ¼
1

ik
þ

4gk

3s2
� B1

� 	
w0ð1Þ � B2w000ð1Þ, (A.37)

where

w0ð1Þ ¼ C1r1e
r1 þ C2r2e

r2 þ C3r3e
r3 þ C4r4e

r4 , (A.38)

w000ð1Þ ¼ C1r
3
1e

r1 þ C2r
3
2e

r2 þ C3r
3
3e

r3 þ C4r
3
4e

r4 . (A.39)
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